Author's Solution

To Prove :
$\angle L F M=\angle B$

Construction :

Join DM \& LM.
Fix a point O on $A D$ such that $O D=D E$.

Proof:

$\mathrm{DF}=\frac{1}{2} A E$ (given)
By construction, OD = DE
$\Rightarrow \mathrm{AF}=\mathrm{FO}$

\Rightarrow By the result on Orthocentre available in the book Novelties of Geometry (Novelty 3 in page 15 \& 16) uploaded in this website,

O is the orthocentre
AD is an altitude of $\triangle A B C$.
$\Rightarrow A D \perp B C$
$\therefore M$, the midpoint of $A B$ is the circumcentre of $\triangle A B D$.
$\Rightarrow \mathrm{MD}=\mathrm{MA}$
$\Rightarrow \angle M A D=\angle M D A$
As per the Nine Point Circle Theorem, the nine points circle of a Δ passes through

1. the feet of its altitudes
2. the midpoints of its sides and
3. the midpoints of the line segments joining the vertices and the orthocentre.

By (1) \& (2),
the nine points circle of $\triangle A B C$ will pass through $\mathrm{M}, \mathrm{D}, \mathrm{L} \& \mathrm{~F}$.
\Rightarrow MDLF is concyclic
$\Rightarrow \angle M D F=\angle M L F$
And $\angle L D F=\angle L M F=90^{\circ}$
(4) \& (5) $\Rightarrow \angle M A D=\angle M L F$

Now, in $\triangle A B D \& \Delta L F M \angle B A D=\angle M L F \quad$ [from (7) above]
$\angle A D B=\angle L M F=90^{\circ} \quad$ [from (6) above]
$\therefore \triangle \mathrm{ABD} \sim \Delta L F M$
$\Rightarrow \angle L F M=\angle B$

