To Prove : $\angle LFM = \angle B$

Construction :

Join DM & LM. Fix a point O on AD such that OD = DE.

Proof:

DF = $\frac{1}{2}AE$ (given) By construction, OD = DE \Rightarrow AF = FO -----(1)

 \Rightarrow By the result on Orthocentre available in the book Novelties of Geometry (Novelty 3 in page 15 & 16) uploaded in this website,

O is the orthocentre -----(2)

AD is an altitude of $\triangle ABC$.

 \Rightarrow AD \perp BC -----(3)

 \therefore M, the midpoint of AB is the circumcentre of Δ ABD.

⇒MD = MA

 $\Rightarrow \angle MAD = \angle MDA$ -----(4)

As per the Nine Point Circle Theorem, the nine points circle of a Δ passes through

- 1. the feet of its altitudes
- 2. the midpoints of its sides and

3. the midpoints of the line segments joining the vertices and the orthocentre.

By (1) & (2),

the nine points circle of ΔABC will pass through M,D,L & F.

 \Rightarrow MDLF is concyclic

 $\Rightarrow \angle MDF = \angle MLF -----(5)$ And $\angle LDF = \angle LMF = 90^{\circ} -----(6)$ (4) & (5) $\Rightarrow \angle MAD = \angle MLF -----(7)$ Now, in $\triangle ABD & \triangle LFM \angle BAD = \angle MLF$ [from (7) above] $\angle ADB = \angle LMF = 90^{\circ}$ [from (6) above] $\therefore \triangle ABD \sim \triangle LFM$ $\Rightarrow \angle LFM = \angle B$ -----Proved
